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ABSTRACT
Background and Aim: Non-contrast magnetic resonance imaging (MRI) offers high spatial resolution without the need 
for contrast agents and has been recognized as a useful imaging technique since the early 1990s. The study aimed to 
evaluate the effectiveness of T2wi compared to gadolinium-enhanced T1-weighted imaging in diagnosing VS.

Methods: We performed a systematic search of literature in PubMed, Web of Science, and Scopus with relevant 
keywords. Studies that did not perform MRI or had insufficient data were excluded. Data extraction was performed 
based on a standardized sheet. Meta analysis was performed with STATA, R, and RStudio.

Results: The initial search retrieved 6,088 articles from which 1,872 duplicates were removed. Finally, 10 studies were 
included based on our eligibility criteria. The pooled sensitivity of MRI in detection of vestibular schwannoma on patient 
level was 97% (95% CI: 82% - 100%, p-value < 0.01) and its specificity was 98% (95% CI: 89% - 100%, p-value < 0.01). 
The pooled sensitivity of MRI in detection of vestibular schwannoma on ear level was 98% (95% CI: 87% - 100%, p-value 
< 0.01) and its specificity on ear level was 99% (95% CI: 96% - 99%, p-value < 0.01). The pooled mean dice score was 
87.42 (95%CI: 82-92). 

Conclusion: Non-contrast MR imaging offers precise evaluations of vestibular schwannoma in comparison to enhanced 
T1-weighted imaging. T2wi shows outstanding diagnostic precision for vestibular schwannomas and presents strong 
reliability in diagnostic evaluations. 
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INTRODUCTION

Acoustic neuromas, also known as vestibular 
schwannomas, vestibular neuromas, or acoustic 
neurofibromas, originate from Schwann cells and can be 
intracranial or extra-axial tumors. Typically located near 
the cochlear or vestibular nerve, they often occupy the 
cerebellopontine angle. Approximately 20% of tumors 
affecting the internal carotid artery are meningiomas, which 
may occur elsewhere in the brain1-3. Bilateral acoustic 
neuromas are predominantly seen in individuals with 
type 2 neurofibromatosis. Comprising 6–10% of all brain 
tumors, acoustic schwannomas are histopathologically 
benign and commonly arise from the sheath of cranial 
nerve VIII. As they grow, they exert pressure on cranial 
nerves VII, VIII, and V, as well as the brainstem, leading 
to symptoms such as tinnitus, hearing loss, dizziness, 
vertigo, and gait instability. Treatment options for acoustic 
schwannomas include observation, microsurgery, and 
radiation therapy. The choice of treatment depends on 
factors such as the tumor’s size and location, the patient’s 
hearing level, and their age4-6.

As the prevalence of incidental and asymptomatic tumors 
increases, more patients and healthcare providers opt for 
serial MRI monitoring. Typically, follow-up MRI scans are 
conducted initially every 6 months, and later at intervals 
of 12 to 24 months. Currently, gadolinium-enhanced T1-
weighted imaging (GdT1wi) is widely regarded as the 
standard method for detecting Vestibular Schwannomas 
(VS)7-11. Regardless of the chosen treatment approach 
(surgery, stereotactic radiosurgery, or conservative 
management), patients with VS typically undergo multiple 
GdT1wi scans during sequential follow-up to assess 
tumor growth12-14.

The use of contrast agents in MRI scans, such as 
gadolinium-based agents, is associated with various 
drawbacks, including time consumption, costliness, 
and potential side effects like allergic reactions and 
nephrogenic systemic fibrosis. Moreover, recent 
radiology studies have indicated that gadolinium-based 
contrast agents can accumulate in the brain parenchyma. 
As an alternative to gadolinium-enhanced T1-weighted 
imaging (GdT1wi), some research suggests utilizing high-
resolution T2-weighted magnetic resonance imaging 
(T2wi) for monitoring Vestibular Schwannomas (VS)15-17. 
T2wi offers high spatial resolution without the need for 
intravenous contrast agents and has been recognized as 
a useful imaging technique since the early 1990s. This 
study aimed to assess whether T2wi could serve as an 
effective monitoring tool compared to GdT1wi in patients 
with VS. The objective was to determine whether T2wi 
could accurately diagnose VS.

MATERIALS & METHODS

This systematic review and meta-analysis study was 
conducted based on the Preferred Reporting Items 
for Systematic reviews and Meta-Analyses (PRISMA) 
guideline 202018. 

Search strategy: Two authors performed a systematic 
search of literature in the following electronic databases: 
PubMed, Web of Science, and Scopus. No time limitation 
was defined and all English studies from the beginning 
until April, 2024 were included. The relevant medical 
subject heading (MeSH) terms and related keywords 
were used in combination to build the search strategy; 
(“magnetic resonance imaging” OR “MRI”) AND 
(“vestibular schwannoma” OR “acoustic schwannoma” 
OR “vestibular neuroma”).

Eligibility criteria: Our eligibility criteria were defined 
based on the PICO framework: (P) Population: patients 
suspected for VS. (I) Not Applicable. (C) MRI findings. 
(O) detection of VS lesions. Those studies that did not 
perform MRI or did not perform any diagnostic accuracy 
measures were excluded. Studies that performed other 
imaging modalities, lacked individual data, or were not in 
English, were also excluded.

Data extraction and outcome measures: A standardized 
Excel sheet was prepared for data extraction. Two 
independent authors performed the data extraction 
based on the aforementioned data extraction sheet. 
Disagreement between these two authors, regarding 
inclusion, exclusion or data extraction, was discussed 
and resolved by a third author. The data extraction sheet 
included the following study characteristics: first author’s 
name, year of publication, study design, country, true 
positive, true negative, false positive, false negative, total 
number of cases, mean age, and reference of comparison. 

Data synthesis and Statistical Analysis: We used R (R 
Foundation for Statistical Computing, Vienna, Austria), 
RStudio (RStudio, Inc., Boston, MA), and STATA 17.0 
for the statistical analysis and creating the figures. The 
pooled sensitivity and specificity were calculated based 
on metadta package in STATA and mada package in 
R. The sensitivity and specificity were pooled using the 
hierarchical logistic regression. The Diagnostic Odds 
Ratio (DOR), Negative Likelihood Ratio (NEGLR), and 
Positive Likelihood Ratio (POSLR) were calculated and 
graphed using mada package in R. The 95% confidence 
interval was also estimated using the binomial distribution. 
The forest plots and Receiver Operating Characteristic 
(SROC) plots were also created19-21.

RESULTS

Our initial search retrieved 6,088 articles from PubMed, 
Scopus, and Web of Science, from which 1,872 duplicates 
were removed. After screening the title and abstract of 4,216 
records, 63 full texts were retrieved, among which 10 studies 
(Figure 1) were included based on our eligibility criteria6, 8, 9, 

13, 17, 22-26. Among the 10 included studies, 96, 8, 9, 13, 17, 22-25 were 
included in the meta-analysis and 1 study did not enter this 
process26. More detail regarding the study characteristics of 
the included studies is summarised in (Table 1).

The pooled sensitivity of MRI in detection of vestibular 
schwannoma on patient level was 97% (95% CI: 82% 
- 100%, p-value < 0.01). The pooled specificity MRI in 
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detection of vestibular schwannoma on patient level was 
98% (95% CI: 89% - 100%, p-value < 0.01). Further detail 
is available in (Figures 2 & 3). 

The pooled sensitivity of MRI in detection of vestibular 
schwannoma on ear level was 98% (95% CI: 87% - 100%, 
p-value < 0.01). The pooled specificity MRI in detection 
of vestibular schwannoma on ear level was 99% (95% CI: 
96% - 99%, p-value < 0.01). Further detail is available in 
(Figures 4 & 5).

The pooled mean dice score was 87.42 (95%CI: 
82-92). Although the patient level and ear level 
studies did not show any significant heterogeneity, 
the Dice score showed significant heterogeneity 
with I2 of 100% and p-value of less than 0.01. 
Further information regarding forest of Dice score 
is summarized in (Figure 6). The Diagnostic Odds 
Ratio (DOR) and negative and positive likelihood 
ratios are summarized in Appendix 1-6.

Pooled Statistics for Patient Level Outcomes

Study Year SEN 95%CI p SPC 95%CI p

Overall - 97 82-100 <0.01 98 89-100 <0.01

Hentschel et al. (22) 2018 87 60-98 - 99 98-100 -

Karol et al. (23) 2018 78 58-91 - 73 54-87 -

Marx et al. (6) 1999 100 69-100 - 100 78-100 -

Neve et al. (24) 2022 100 97-100 - 98 91-100 -

Soulie et al. (9) 1998 100 86-100 - 93 85-97 -

Valesano et al. (13) 2018 91 76-98 - 100 89-100 -

Heterogeneity Tau2 I2

Generalized 7.06 32.45%

Sensitivity 2.93 30.05%

Specificity 2.66 37.26%

Pooled Statistics for Ear Level Outcomes

Study Year SEN 95%CI p SPC 95%CI p

Overall - 98 87-100 <0.01 99 96-99 <0.01

Hentschel et al. (22) 2018 90 73-98 - 100 99-100 -

Karol et al. (23) 2018 92 88-95 - 98 97-99 -

Marx et al. (6) 1999 100 72-100 - 100 91-100 -

Neve et al. (24) 2022 100 98-100 - 98 94-100 -

Soulie et al. (9) 1998 100 93-100 - 93 88-96 -

Valesano et al. (13) 2018 91 76-98 - 100 96-100 -

Heterogeneity Tau2 I2

Generalized 1.38 25.72%

Sensitivity 3.83 23.96%

Specificity 0.87 47.88%

Pooled Statistics for Dice Score

Study Year Mean 95%CI I2 Tau2 p-value n

Overall - 87.42 82.82-92.02 100% 21.25 <0.01 672

Neve et al. (24) 2022 82 - - - - 112

Neves et al. (25) 2023 89 - - - - 122

Shapey et al. (8) 2019 93 - - - - 243

Yao et al. (17) 2022 85 - - - - 195

Table 1: The pooled sensitivity, specificity and heterogeneity of the included studies.

*SEN=sensitivity; SPC=specificity; CI=confidence interval
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Figure 1: PRISMA flowchart of the included studies.

Figure 2: Patient level pooled sensitivity and specificity of MRI.
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Figure 3: The Receiver Operating Characteristic (ROC) plot of MRI on patient level.

Figure 3: The Receiver Operating Characteristic (ROC) plot of MRI on patient level.

Figure 4: Ear level pooled sensitivity and specificity of MRI.
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Figure 6: Pooled mean dice score among the included studies.

DISCUSSION

Based on the findings of our systematic review and meta-
analysis study, MRI had high sensitivity and specificity 
for detecting vestibular schwannomas.  The pooled 
sensitivity and specificity of MRI in detection of vestibular 
schwannoma on patient and ear level was 97%, 98%, 
98%, and 99%, respectively. The pooled mean dice score 
was also 87.42%. Overall, the studies have shown low 
heterogeneity for sensitivity and specificity, however, the 
dice score showed high levels of heterogeneity. 

Two systematic reviews have conducted comparative 
analyses of high-resolution T2-weighted imaging 
(T2w) and gadolinium-enhanced T1-weighted imaging 
(GdT1w) in the assessment of vestibular schwannoma. 
Both reviews concluded that GdT1w, considered the 
gold standard, exhibited high sensitivity and specificity1, 

27, 28. Interestingly, there were no observed differences 
in measured tumor diameter between T2w and GdT1w 
sequences. Moreover, the specific T2w protocol utilized 
did not influence the reported sensitivity or specificity. 
Kim et al. noted that despite variations in protocols, the 
T2 dephasing remained similar, with differences primarily 
attributed to the characteristics of the MRI machines. This 
allowed for the grouping of protocols for comparison 
purposes29-31.

The advancement in MRI sequencing has facilitated 
the accurate identification of vestibular schwannoma 
without the need for contrast agents. Hentschel et al. 
conducted a study highlighting that specialized training 
in radiological interpretation was not essential. In their 
research, they demonstrated this by having a medical 
doctor, who had received only a brief tutorial and had no 
prior experience in neuroradiology, serve as the second 
examiner32-35. Despite the absence of formal training, 
there was strong agreement between raters, indicating 
that accurate interpretation of noncontrast T2-weighted 
images can be achieved even without specific expertise 
in neuroradiology22, 36-38.

The findings of this study suggest that a noncontrast 
MRI protocol, such as T2-weighted imaging (T2wi), 
is comparable to conventional MRI protocols, like 
gadolinium-enhanced T1-weighted imaging (GdT1wi), 

in assessing the size of vestibular schwannomas (VS). 
Additionally, our analysis indicates that T2wi is as effective 
as GdT1wi in detecting VS5, 39, 40. Furthermore, the study 
demonstrates the excellent reliability of T2wi, with high 
agreement observed among both inter- and intraobserver 
evaluations. These results support the use of noncontrast 
T2wi for the detection and monitoring of patients with 
VS10, 40-42.

The utilization of a paramagnetic contrast agent 
enhances the delineation of tumor boundaries, enabling 
radiologists to distinguish acoustic neuromas from 
other Cerebellopontine Angle (CPA) tumors, including 
meningiomas, with exceptional precision15, 16, 43. However, 
this enhancement comes with notable drawbacks, 
including increased financial expenses compared to 
non-contrast MRI, and nearly doubling the duration of 
the procedure. Moreover, there is a risk of complications 
such as nephrogenic systemic fibrosis associated with 
the use of contrast agents16, 17, 44.

Previous research has explored the feasibility of utilizing 
non-contrast T2-weighted imaging (T2wi) for the 
accurate diagnosis of Vestibular Schwannoma (VS). 
A comprehensive review of the literature, including 
univariate meta-analyses of sensitivity and specificity, 
indicated that non-contrast MRI demonstrated high 
sensitivity and cost-effectiveness in diagnosing acoustic 
neuromas. High-resolution T2wi was deemed to be of 
adequate quality for reliably diagnosing VS of any size 
and could potentially replace routine contrast-enhanced 
T1-weighted imaging (T1wi)7, 45, 46. However, it is worth 
noting that pooling sensitivity and specificity data may 
lead to overestimation due to the negative correlation 
often observed within studies. Hence, more sophisticated 
statistical approaches are warranted in meta-analyses of 
diagnostic test accuracy12, 14, 26, 47.

The SROC (Summary Receiver Operating Characteristic) 
approach has emerged as the preferred method for 
meta-analyzing studies that provide both sensitivity and 
specificity data. This approach transforms each sensitivity-
specificity pair into a single measure of accuracy known 
as the Diagnostic Odds Ratio (DOR). One advantage 
of the DOR approach is its ability to address the inherent 
correlation between sensitivity and specificity values2, 4, 48, 49.
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Additionally, it accommodates the heterogeneity across 
studies arising from variations in the thresholds chosen 
by researchers. Considering this negative curvilinear 
correlation is crucial when pooling data for meta-analyses. 
The DORs can be effectively utilized in meta-analyses of 
diagnostic studies. Therefore, we conducted a bivariate 
meta-analysis using DORs instead of pooling sensitivity 
and specificity data. Furthermore, we assessed the inter- 
and intra-observer agreement to evaluate the reliability of 
high-resolution T2-weighted imaging3, 50, 51.

CONCLUSION

The findings of this meta-analysis suggest that T2-weighted 
imaging (T2wi) provides accurate measurements of 
vestibular schwannoma when compared to gadolinium-
enhanced T1-weighted imaging (GdT1wi). T2wi exhibits 
excellent diagnostic accuracy for vestibular schwannomas 
(VS) and demonstrates high reliability in diagnostic 
assessments. Nevertheless, additional studies are 
necessary to validate the outcomes of our investigation.
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